Name: _____

Notes:

- 1. Fill in your name (first and last) and student ID number in the space above.
- 2. This midterm contains 10 pages (including this cover page) and 6 problems. Check to see if any pages are missing.
- 3. Answer all questions in the space provided. Extra space is provided at the end. If you want the overflow page marked, be sure to clearly indicate that your solution continues.
- 4. Show all of your work on each problem.
- 5. Your grade will be influenced by how clearly you express your ideas, and how well you organize your solutions.

Problem	Points	Score
1	11	
2	9	
3	9	
4	9	
5	3	
6	4	
Total:	45	

- 1. Consider the region Ω in \mathbb{R}^3 that is above the surface $x^2 + y^2 z = 4$ and below the *xy*-plane. Also consider the vector field F(x, y, z) = (0, 0, z).
- [2] (a) Circle the the correct visualization of Ω below.

- [7] (b) Use a surface integral to directly compute the flux of \mathbf{F} through the entire surface $\partial\Omega$, with respect to the outward pointing normals.
- [2] (c) Use the Divergence Theorem and your answer in (b) to determine the volume of Ω .

2. Consider the region $D \subset \mathbb{R}^2$ (depicted below) that is bound by the curves $y = \frac{1}{2}x$, $y = 1 + \sqrt{2-x}$, and $y = 2(1 - \sqrt{1-x})$, and let Φ be the transformation defined by

$$\Phi(u,v) = (x(u,v), y(u,v)) = (2u - v^2, u + v)$$

that transforms a region $\mathcal{R} \subset \mathbb{R}^2$ into D.

[2] (a) Identify the region \mathcal{R} that is mapped to the region D under Φ (i.e., such that $\Phi(\mathcal{R}) = D$).

- [2] (b) Determine the Jacobian of the transformation Φ .
- [5] (c) Let $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ be the vector field defined by $\mathbf{F}(x, y) = (y^2 + x, 3xy)$. Compute the circulation of \mathbf{F} around the boundary of D oriented counterclockwise. (Hint: Use a theorem to set up and evaluate a double integral over the region \mathcal{R} .)

3. Consider the two vector fields $F : \mathbb{R}^3 \to \mathbb{R}^3$ and $G : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$F(x, y, z) = (ye^{xy} + z, xe^{xy} + z, x + y)$$
 and $G(x, y, z) = (xy + yz, xy + xz, e^z)$.

[5] (a) One of the two vector fields is conservative and the other is not. Determine which one is conservative and find a scalar potential. For the non-conservative field, show that it is not conservative.

[4] (b) Let Γ be the part of the curve $y = x^2$ on the plane z = 0 from x = 0 to x = 1. Evaluate the line integrals $\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ and $\int_{\Gamma} \mathbf{G} \cdot d\mathbf{r}$. (Hint: only one integral must be evaluated directly.)

4. Let the region Ω (depicted below) be the part of the interior sphere $x^2 + y^2 + z^2 = 1$ in the quadrant $x, y, z \ge 0$. Suppose the electric field \boldsymbol{E} in the region Ω is given by $\boldsymbol{E}(x, y, z) = (y - xz) \, \hat{\boldsymbol{\imath}} + x^2 z \, \hat{\boldsymbol{\jmath}} + z^2 \, \hat{\boldsymbol{k}}$.

- [2] (a) Determine the divergence of \boldsymbol{E} .
- [5] (b) Use Gauss' law to determine the total amount of charge contained in Ω .
- [2] (c) Let Σ be the part of the boundary of Ω that lines on the *xy*-plane (i.e. z = 0). What is the electric flux through Σ ? Explain.

[3] 5. Suppose a C^1 -vector field $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ satisfies $\nabla \cdot \mathbf{F} = 0$ everywhere. Let Σ_1 and Σ_2 be two surfaces in \mathbb{R}^3 that share the boundary curve $\Gamma = \partial \Sigma_1 = \partial \Sigma_2$. Show that the flux of \mathbf{F} is independent of the surface chosen (Σ_1 or Σ_2).

(Your solution should reference an important theorem.)

- 6. Suppose \mathbf{F} is a radial vector field of the form $\mathbf{F}(\mathbf{r}) = f(r)\mathbf{r}$, where f is an arbitrary function, $\mathbf{r} = (x, y, z)$, and $r = \|\mathbf{r}\| = \sqrt{x^2 + y^2 + z^2}$.
- [4] (a) Expand out $\nabla \cdot \mathbf{F}$ and show that $\nabla \cdot \mathbf{F} = 0$ only if f satisfies a certain differential equation. (Your differential equation should be only in terms of r, and not x, y, z.)
- [2 bonus] (b) **Extra Credit**: Solve the separable differential equation from part (a) to find the form of f(r) that satisfies $\nabla \cdot \mathbf{F} = 0$.

Trigonometric identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \qquad \sin 2\theta = 2 \sin \theta \cos \theta$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \qquad \cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Change of variable formula If $\Phi(u, v) = (x(u, v), y(u, v))$ is a one-to-one C^1 -transformation then

$$\iint_D f(x,y) \, dx \, dy = \iint_{\mathbf{\Phi}^{-1}(D)} f(x(u,v), y(u,v)) \, \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

where the region $\mathbf{\Phi}^{-1}(D)$ is mapped to D under $\mathbf{\Phi}$. The Jacobian is defined as

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right| = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

• Polar coordinates: $x = r \cos \theta$ and $y = r \sin \theta$. The Jacobian is $\frac{\partial(x, y)}{\partial(r, \theta)} = r$

- Cylindrical coordinates: $x = r \cos \theta$, $y = r \sin \theta$, z = z. The Jacobian is $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r$
- Spherical coordinates: $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$. The Jacobian is $\frac{\partial(x, y, z)}{\partial(\rho, \theta, \varphi)} = \rho^2 \sin \varphi$

Vector calculus identities

$$\nabla \times (f\mathbf{F}) = (\nabla f) \times \mathbf{F} + f(\nabla \times \mathbf{F})$$
$$\nabla \cdot (f\mathbf{F}) = (\nabla f) \cdot \mathbf{F} + f(\nabla \cdot \mathbf{F})$$
$$\nabla \times (\nabla f) = \mathbf{0}$$
$$\nabla \cdot (\nabla \times \mathbf{F}) = 0$$
$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - \nabla^{2}\mathbf{F}$$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

This space is for sketch work or overflow

(If you want something here marked, be sure to clearly indicate on the question page.)

This space is for sketch work or overflow

(If you want something here marked, be sure to clearly indicate on the question page.)

This space is for sketch work or overflow

(If you want something here marked, be sure to clearly indicate on the question page.)